IN-VITRO RELEASE KINETICS OF SALBUTAMOLSULPHATE MICROCAPSULES COATED WITH BOTH EUDRAGIT RS 100 AND EUDRAGIT RL 100

R. S. Bhanja, T.K. Pal

Pharmaecutical Engineering Division Department of Pharmaceutical Technology Jadavpur University Calcutta - 700032, India.

ABSTRACT

Sabutamolsulphate, a bronchodialatory drug for Asthma is encapsulated by Eudragit RS 100 and Eudragit RL 100 of varying ratios (1:1, 3:1, 1:3) using Emulsion-Solvent-Evaporation method. The experimental obtained from the in-vitro dissolution study in the light of different kinetic computed models like Zero Ordr, Higuchi Matrix, First Order, Baker-Lonsdale. An extensive programming in BASIC is performed to determine the co-relation coefficient and slope for each of the functions. The diffusivity rate constant (K_{RI}) and diffusion coefficient (Da) have been evaluated with the help of Baker-Lonsdale Model.

INTRODUCTION

Microencapsulation οf drugs well as as diffusional release kinetics have been extensively reported by various authors (1,2,3,4). But limited information is available on computer simulation release kinetics data. The prime objective of this paper is to compute the drug release data, obtained from the in-vitro dissolution studies, in the light of different kinetic models according to the to the method described by Bhaja et. al (5).

An extensive programming in BASIC(6) is performed to the data obtined compute release from the dissolution studies of different microcapsules coated with varying Eudragit RS 100 and Eudragit RL 10 ratios (1:1, 3:1, 1:3) to fit the order of the equations (Zero Order Mt=f(t); First Order log (Mo-Mt)=f(t); Higuchi Matrix $Mt=f(\overline{t})$ and Baker Lonsdale $\frac{3}{2}$ [1-(1-Mt)^{2/3}] - Mt = f (t) where Mt is the amount of drug release at time t, $M\infty$ is the amount of drug release at infinite time (∞) and Mo is the initial amount of drug in the microcapsules. The co-relation coefficient analysis for linear relationship of the above equations have been determined with the help of computer program(6). The diffusion coefficient (Da) and diffusivity rate constant (K_{BI}) have been evaluated with the help of Baker-Lonsdale Model when the Matrix mechanism of release predominates over Zero Order and First Order having better co-relation coefficient for linearity.

MATERIALS AND METHODS

Salbutamolsulphate (Donated by CIPLA, India Ltd). RS 100 Eudragit RL 100 (Donated by Rohm Eudragit Pharma, Germany). A11 other chemicals are analytical grade produced in India by different companies. Computer, WIPRO PC-XT (Wipro, India Ltd).

<u>Preparation of Microcapsules</u>

Microcapsules were prepared by solvent evaporation 800 ml Heavy-Liquid-Paraffin method using external phase with 4 ml of Span 20 as emulsifier 1 gram of Eudragit RS 100 and 1 gm of Eudragit RL 100 was dissolved in 5 ml of methylene chloride and 0.175 gm of Aluminiumtristearate was added to it and gm of salbutamolsulphate was dispered polymeric solution. Then the drug-polymer dispersion drop by drop into external stirred at 200 RPM. The temperature of the mix ture was raised to 35°C and kept constant for 3 hours. filtered off Then the microcapsules produced were external phase and washed with hexane. Then dried and separated into size fractions using standard sieves.

micromeritic properties of the microcapsules such as density porosity average particle size were determined and tabulated in the Table-1.

In-vitro Release Rate Study

The dissolutions of the microcapsules were carried out at medium of pH 1.2 and pH 7.2 by modified flask

Drug Development and Industrial Pharmacy Downloaded from informahealthcare.com by Xavier University on 01/28/12 For personal use only.

TABLE I

MICROMERETIC PROPERTIES OF THE MICROCAPSULES.

Varying Eudragit RS 100 and Eudragit RL 100 ratio.	3:1 1:3	y Size Density Porosity Size Density Porosity um gm/cc % um. gm/cc %	850 1.0012 23.0045 855 1.0528 24.0162	400 1.1145 8.9845 390 1.1256 16.0215	135 1.1204 7.0295 130 1.1472 9.2254
git RL 100		1	23.0045	8.9845	7.0295
and Eudra	3*1	Density gm/cc	1.0012	1.1145	1.1204
jit RS 100		Size um	850	400	135
ing Eudrag	1:1	Porosity Size % um	23.0010 850	13.0168	7.9842
Vary		Density gm/cc	0.9748	1.1249	1.1387
		Size	845	395	135
	Sieve		+22	-22+44	-44+85

method (7) and the drug release was estimated by using the method of Singbal et. al (8). The data obtained from the in-vitro dissolution studies were computed in the light of different kinetic models. The slope and co-relation coefficient of ech of the functional equations were obtained from the computer out put and are tabulated in Tables 2, 3, and 4.

The diffusion coefficient and diffusivity constant were evaluated upto 50% of the drug release with the help of Baker-Lonsdale Model and tabulated in Tables 5 and 6.

RESULTS AND DISSCUSSION

It is evident from the in-vitro dissoltuon profiles that the release of the drug increases as the size of the microcapsules decreases. The release of drug increases as the amount of Eudragit RL 100 increases in the polymeric coating material for both the pH-1.2 and 7.2. This is due to the fact that RL 100 Eudraait which contains more centres than Eudragit RS 100 gives the microcapsules structure (9). membrane а more open More RL 100 is strongly hydrophilic promotes the penetration of the aqueous buffers and hence good leaching of the drug so due to strong permeability and greater porosity of Eudragit RL 100 the release of the drug increases as the amount of Eudragit RL 100 increases in the polymeric coating materials. The release of the drug for a particular size of the microcapsules is more controlled and sustained at pH 7.2 than pH 1.2. This is due to the

Drug Development and Industrial Pharmacy Downloaded from informahealthcare.com by Xavier University on 01/28/12 For personal use only.

CORELATION COEFFICIENT AND SLOPE OF KINETIC EQUATIONS UPTO 50% OF DRUG RELEASE.

TABLE 2

		ina	ORAGIT RS 1	OOAND EUDRA	EUDRAGIT RS 100AND EUDRAGIT RL-100 RATIO 1 : 1	RATIO		
Sieve fraction	Zero Order	Higuchi Matrix	First Order	Baker Lonsdale	Zero order	Higuchi Matrix	First Order	Baker Lonsdale
	p ^H 1,2					рн 7.2		
+22	0.9904 (0.3236)	0.9996 (1.5090)	0.9967	0.9980	0.9727 (0.1430)	0.9949 (1.0252)	0.9873	0.9979
22+44	0.9242	0.9711 (1.0958)	0.9445 (0.0250)	09761 (0.0023)	0.9862 (0.1841)	0.9958	0.9937 (0.0253)	0.9924 (0.0017)
-44+85	0.9930	1.0000	0.9983 (0.0525)	0.9998	0.9519 (0.1487)	0.9819	0.9643 (0.0243)	0.9797 (0.0023)

* Slope

Drug Development and Industrial Pharmacy Downloaded from informahealthcare.com by Xavier University on 01/28/12 For personal use only.

TABLE 3

	CORELATION	COEFFICIENT	AND SLOPE	OF KINETIC	EQUATIONS	COEFFICIENT AND SLOPE OF KINETIC EQUATIONS UPTO 50% OF DRUG RELEASE	DRUG RELEA	SE
		EUD	EUDRAGIT RS 100 AND EUDRAGIT RL-100 RATIO 3 : 1	O AND EUDRA 3 : 1	GIT RL-100	RATIO		
Sieve fraction	Zero Order	Higuchi Matrix	First Order	Baker Lonsdale	Zero Order	Higuchi Matrix	First Order	Baker Lonsdale
	рн 1.2					рн 7.2		
+ 22	0.9671	0.9946	0.9787 (0.0183)	0.9913 (0.0019)	0.9857	0.9976	0.9937 (0.0075)	0.9955 (0.0006)
-22+44	0.9908 (0.1725)	0.9996	0.9949 (0.0298)	0.9984	0.9289	0.9747	0.9439	0.9701 (0.0009)
-44+85	0.9903	0.9995 (0.8010)	0.9946 (0.0306)	0.9982	0.9702 (0.3811)	0.9908	0.9850	0.9991 (0.0058)

Slope

Drug Development and Industrial Pharmacy Downloaded from informahealthcare.com by Xavier University on 01/28/12 For personal use only.

TABLE 4

CORELATION COEFICIENT AND SLOPE OF KINETIC EQUATIONS UPTO 40% OF DRUG RELEASE

		EUDR	AGIT KS 100	1 : 3	EUDRAGIT KS 100 AND BODRAGII AL - 100 MILLO 1 : 3	A116W		
Sieve fraction	Zero Order	Higuchi Matrix	First Order	Baker Lonsdale	Zero Order	Higuchi Matrix	First Order	Baker Lonsdale
	Jd J	рн 1.2				Hď	рн 7.2	
+22	0.9671	0.9946	0.9779	0.9910	0.9837	0.9979	0.9926 (0.0118)	0.9950 (0.0011)
-22+44	0.9496 (0.2436)	0.9708	0.9619	0.9782	0.9838	0.9979	0.9926 (0.0123)	0.9950 (0.0011)
-44+85	0.9609 (0.1230)	0.9853 (0.5829)	0.9675	0.9737 (0.0027)	0.9856 (0.2915)	0.9981	0.9936 (0.0484)	0.9994

* Slope.

TABLE - 5

DIFFUSION COEFFICIENT AND DIFFUSIVITY RATE CONSTANT OF SALBUTAMOL SULPHATE FROM MICROCAPSULES AT pH 1.2

	Varyin	g Eudragit R	S 100 & Eudr	Varying Eudragit RS 100 & Eudragit RL 100 Ratio	atio	
Sieve fraction	Eudragit Eudragit	Eudragit RS 100 : Eudragit RL 100 1:1	Eudragit Eudragit 3:1	Eudragit RS 100: Eudragit RL 100 3:1	Eudragit RS 100 Eudragit RL 100 1:3	RS 100 :
	Da x 109 KBL x 104	K _{BL} ×10 ⁴	Dax109 KBLx104	BL×10 ⁴	Dax109 KBLx104	BL x104
	cm ² Sec ⁻¹	Min ⁻¹	cm ² Sec ⁻¹	Min-1	cm ² Sec ⁻¹	Min-1
+ 22	22.1078	7.5	10.8241	19	11.2240	18
- 22 + 44	3,2308	23	4.6329	33	5.1345	33
- 44 + 85	0.9211	56	0.5366	35	0,4240	74

TABLE - 6

DIFFUSION COEFFICIENT AND DIFFUSIVITY RATE CONSTANT OF SALBUTAMOL SULPHATE FROM MICROCAPSULES AT PH 7.2

DIFFUSION COEFFICIENT AND DIFFUSIVITY KAIE CONSIANT OF SALBUTAMOL SULPHAIE FROM MICROCAPSULES AT pH 7.2	T pH 7.2	ID DIFFUSIVITY	KAIE CONS	TANT OF SALBU	IAMOL SULPHAIE	FKOZ
	Varying	Varying Eudragit RS 100 & Rudragit RL 100 Ratio	0 & Rudra	git RL 100 Rat	io	
Sieve fraction	Eudragi Eudragi	Eudragit RS 100 : Eudragit RL 100 1 : 1	Eudragi Eudragi	Eudragit RS 100: Eudragit RL 100 3:1	Eudragit RS 100 Eudragit RL 100 1 : 3	100 :
	Dax109 KBLx104	K _{BL} ×10 ⁴	Dax109 KBLx104	K _{BL} x10 ⁴	Dax109 KBL x104	c10 ⁴
	cm ² Sec ⁻¹	Min -1	cm ² Sec ⁻¹	Min ⁻¹	cm ² Sec ⁻¹ Min ⁻¹	-1-
+ 22	16.8347	20	5.4662	9	10,9684 11	
- 22 + 44	3.9172	17	2.0020	6	2.3158 11	
- 44 + 85	0.6049	23	1.4624	58	1.3563 54	. +

fact that salbutamilsulphate which is a salt of weak base, the solubility of the drug decreases as the pH of the medium increases (10), but the stability of the drug decreases with increase of the pH of the medium.

It is observed from the in-vitro release kinetic study that the Higuchi-Matrix mechanism predominates over First Order and Zero Order mechasnism having better co-relation coefficient for linearity upto fifty percent of drug release.

It is evident from the diffusional studies, with the Baker-Lonsdale the of model, diffusion coefficient has a trend of increasing as the size of the microcapsules increases, while the diffusivity rate constant (K_{Bl}) increases as the size of the microcapsule decreases. These results are in good agreement with Vidmar et. al (11).

ACKNOWLEDGEMENT

grateful to Indian Council The authors are (New Delhi, India) Medical Research for financial support to carry on this research work.

REFERENCES

- 1. S. Benita. н. Hoffman, M.J. Donbrow, Microencapsulation, 2, 207, (1985).
- 2. V. Jalsenjak, Acta Pharmaceutica Vidmar, I. Technologica, 28, 78, (1982).
- R.G. Gupta, B.C. Rao, Drug Dev & Indus Pharm, 11, 41, (1985).

- 4. H.P. Merkle, S. Speiser, J. Pharm. Sci., 82, 1444, (1985).
- Pal, Bhanja, T.K. Bulletino Chemico Farmaceutico, 128, 281, (1989).
- 6. R.S. Bhanja, A. Nandy, T. Roychowdhury, T.K. Pal, Indian J. Pharm. Sci, 52 233, (1990).
- 7. P. L. Madan, R.K. Jani, A.J. Barticuer, J. Pharm Sci, 67, 409, (1978).
- 8. D.N. Shingbal, R.R. Naik, Indian Drugs, 25, 273, (1985).
- 9. R. S. Okor, Int. J. Pharm, 11, 1, (1982).
- 10. N. Udupa, S.V. Tatwadi, K.D. Gode, Indian Drugs, 23, 221, (1986).
- 11. V. Vidmar, I. Jalsenk, T. Kondo, J. Pharmacol, 34, 411, (1982).

